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Introduction 
~ 

This report  w i l l  summarize the work performed under NASA Grant NGR-05- 

OOg-G30 during i t s  two year period (March 1966-mrch 1968), although most 

of what i s  discussed here i n  d e t a i l  w i l l  cover the last semiannual period 

(September 1967-March 1968). 

I. Summary of Overall Program 

The work done under t h i s  grant is  a se r i e s  of experiments directed 

toward a fundamental understanding of the Magneto-plasmadynamic arc.  The 

main emphasis has been on the behavior of the a rc  i t s e l f  within i ts  region 

of current flow, ra ther  than on the properties of the expelled plasma 

(although recent experiments have been done i n  t h i s  area), and no a t tez t ion  

at a l l  has so  far been given t o  the thrus t  or eff ic iency which might charac- 

t e r i ze  the system. 

The motive f o r  studies of the in te rna l  physics of the NFD arc  i s  simply 

(as defined by i ts  charac te r i s t ic  mass flow rate, magnetic that t h i s  system 

bias  f i e l d ,  and geometry) has been found t o  be s ignif icant ly  more e f f i c i en t  

t h a t  any o-hher form of a rc  i n  converting e l e c t r i c a l  input power in to  directed 

propellant k ine t ic  energy (1-5). The bulk of MPD research e f f o r t  has, quite 

reasonably, been concerned with optimization of the arc  f o r  propulsion use, 

which implies an emphasis on t h m s t ,  specif ic  impulse, and most importantly, 

efficiency. 

t o  the a rc  i t s e l f ,  there has been no compelling reason, a t  l e a s t  from the 

application point of view, f o r  determining the precise in te rna l  character of 

Since these parameters can be determined by measurements external  

the discharge. 

An even more effect ive inhibi t ion against in te rna l  experiments on the 

MPD a rc  i s  the very high power density i n  the current charnel. Even a 



re la t ive ly  small system consumes several  kilowatts of e l e c t r i c a l  power 

i n  a volume of no more than a f e w  cubic centimeters; t h i s  environment 

is  quite destructive t o  any kind of a probe which might be placed i n  

it. The physical dimensions of the discharge region i n  a ty-pical a r c  

are also small enough t o  make the achievement of good s p a t i a l  resolu- 

t i o n  quite d i f f i c u l t  i n  those experiments (e .g., op t ica l  spectroscopy) 

which might otherwise be feasible .  

W e  have undertaken a program of in te rna l  physical measurements of 

an MPD system i n  sp i t e  of the d i f f i cu l t i e s  mentioned above. 

has been t o  sidestep these troubles by (a) running the arc  on short 

The strategy 

pulses, s o  t h a t  the cumulative heat loading t o  probes does not destroy 

them, and (b)  making the system w i t h  a re la t ive ly  large and open coaxial 

electrode s t ructure  so t h a t  the  s p a t i a l  resulution of the yarious probes 

is  a re la t ive ly  small f ract ion of the  interelectrode spacing. 

these modifications of "standard" operating conditions have been adopted 

with considerable caution: pulsed operation, f o r  example, i s  a l e g i t i -  

mate approximation t o  D.C, operation only i f  a t rue  steady s t a t e  is  

achieved fo r  a fair  fract ion of the pulse time, and a major change i n  

a rc  geometry might r e su l t  i n  en t i r e ly  a typica l  behavior G f  the  arc .  

have attempted t o  meet the  f i rs t  objection by employing a pulse length 

of 500 microseconds. Any character is t ic  t i m e  constant of the arc  should 

be much shorter than t h i s ,  with the  single exception of the thermal t i m e  

constant of the tungsten cathode, which is  several  seconds i n  a normal 

arc .  

steady-state cathode temperature high enough t o  supply a rc  electrons by 

Both of 

W e  

In  the present system, t h i s  par t icu lar  difficulty--attaining a 

thermionic emission--has been avoided by a pulsed preheating of the  

cathode pr ior  t o  the main a rc  pulse. 

the form of a U-shaped ribbon of 1 cm x 6.005 i n  tungsten, through which 

For t h i s  purpose, our cathode has 
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several thousand amperes of 60 cps A.C. current are  passed f o r  about 

0.4 seconds. A temperature of about 34GG°K is achieved, 

The electrode geometry consists of a 4" diameter stainless steel  

cylinder which serves as the anode, with the aforementioned tungsten 

ribbon cathode mounted on i t s  axis and recessed about 3 cm back of the 

edge of the cylinder. In  adopting t h i s  geometry, it w a s  decided tha t  

if  typical MPD a rc  behavior ( in  terms of terminal impedance as a func- 

t ion  of bias f i e ld ,  f o r  example) could not be obtained, it would then 

be possible t o  place various shaped inser t s  between the anode and 

cathode u n t i l  an adequately good approximation t o  the usual arc con- 

figuration ia obtained. Fortunately, these measures did not prove nec- 

cessary . 
Propellant flow i n  t h i s  system is a l so  pulsed. I n  t h i s  way, the 

arc  can be operated against a high vacuum environment, ra ther  than the 

considerable background pressure which necessarily accompanies the 

typ ica l  flow rate in to  vacuum systems of ordinary capacity. 

11. S m a r y  of Earlier Results 

The following w i l l  b r ie f ly  summarize our experimental resu l t s  

during the first three semiannual periods of t h i s  grant (6,7,8). 

1. The pulsed arc  w a s  found t o  be typ ica l  of MPD arcs  i n  most of 

i t s  character is t ics .  The variation of arc  impedance with bias  f i e l d  and 

the absolute value of impedance i t s e l f  corresponds t o  ordinary experience. 

Our standard operating conditions have been: 

Arc voltage 75 volts  

Arc current 556 amperes 

B i a s  f i e l d  220G gauss (maximum, 
at  rear  of arc  chamber) 

Propellant : Argon 

Propellant flow ra te  : 4 G .G2 g/sec 
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For a given bias f i e l d  strength, the arc voltage is  nearly independent 

of arc current; however, the voltage increases l inear ly  with b ias  f i e ld .  

2. By the use of magnetic f i e l d  probes and Rogowski current loops 

it w a s  determined tha t  under standard arc conditions, the ac tua l  arc  current 

d i s t r ibu t ion  i s  not symmetrical, but  i s  highly localized in to  a l'spoke'l at 

one azimuth; t h i s  spoke ro ta tes  at  a frequency which depends upon the product 

I B  (arc current x bias f i e l d ) ,  and a l so  the mass flow rate. For a given rate 

of mass flow, the rotat ion rate is l i nea r  w i t h  IB over nearly a fac tor  of ten 

variation i n  IB.  

3 .  In i ts  geometrical configuration, the current channel i s  highly con- 

s t r i c t e d  at  the electrodes, and flares somewhat i n  between, mostly i n  the 

axial direction. The current appears t o  emerge from a spot of the order of 

1 cm i n  diameter a t  the forward edge of the anode, and converge again t o  

the heated tungsten ribbon cathode. 

ponent i n  the  current spoke. 

i n  the anode sheath region. 

There appears t o  be no azimuthal cam- - - 
There is, however, evidence fo r  azimuthal current 

a 

4. Single and double f loa t ing  probes have been used t o  obtain the dis- 

t r ibu t ion  of po ten t ia l  and e l e c t r i c  f i e l d  within the arc. Such f loa t ing  

potent ia l  data are subject t o  correction f o r  the sheath drop, which is i n  

the neighborhood of 3 o r  4 times kT/e. 

correction amounts t o  about 3 vol ts ,  so t h a t  the measured potent ia ls  do not 

It w i l l  be shown later t h a t  t h i s  

d i f f e r  markedly from space potent ia l .  

It has been found t h a t  the  plasma poten t ia l  d i s t r ibu t ion  i s  one f o r  

which the magnetic bias  f i e l d  l i nes  are, very closely,  l i nes  of constant 

potential .  

channel is  only about 45 vol t s  out of the 75 vol t s  applied, w i t h  the  remain- 

ing 30 vol t s  appearing over a th in  anode sheath. 

The magnitude of the t o t a l  po ten t ia l  drop across the main a rc  
- -  . _- 

Approximately 40$ of the  

input e l e c t r i c a l  power i s  thus dissipated at  the anode, a r e su l t  which is  

i n  agreement with calorimetric measurements of power loss i n  other MPD arc. 
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111. Experimental Resul t s  for Fourth Semiannuzl Period 

This section summarizes the experimental progress during the last 

semiannual report period (September 1967 t o  March 1968). 

1. Spectroscopy 

A collimated telephoto lens w a s  mounted on a spectrometer making it 

possible t o  spa t ia l ly  analyze the radiation from the arc .  

survey from 4000 k t o  5010 H showed the existence of only A I 1  l i n e s .  

A spectroscopic 

No A I  

l ines  were observed. The l ine  in tens i t ies  emitted from the spoke were an 

order of magnitude greater than emissions from any other region of the arc 

or exhaust plume. 

The electron temperature of the plasma i n  the current spoke has been 

determined by measuring the re la t ive  l ine  in tens i t ies  of thir teen A I 1  

spectral  l ines .  The energy levels involved i n  the t ransi t ions a re  included 

in  a c lus te r  of levels having in te r leve l  gaps of l e s s  than an electron vol t ,  

therefore the population densi t ies  of these levels  should be i n  loca l  thermal 

equilibrium with each other. 9 

The magnitude of the observed l ine  intensi ty  is  then given by 

where g is  the s t a t i s t i c a l  weight of the upper state involved i n  the t rans i -  

t ion,  A i s  the t rans i t ion  probability, h is the wavelength, E is the excita- 

t ion energy of the upper state, T is  the electron temperature, and C is a 

constant which includes a geometric collection factor .  

Taking the log and rearranging, Eq. (1) becomes 

Fig. l i s  a p lo t  of the experimental values for the I;Hs of Eq. (2)  as a 

function of the excitation energies of the observed l ines .  With the 
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exception of point A, the data seems t o  f i t  a s t ra ight  l ine .  

the l ea s t  square fit corresponds t o  an electron temperature of 1.1 f 0.2 e V .  

The slope of 

The above procedure w a s  repeated f o r  several  points i n  the radial 

interval  from R = 2,O t o  4.0 cm with the same resu l t .  Fig. 2 shows the 

azimuthal variation of T at a radius of €3 = 3 . G  cm. 

of the a rc  current density i s  included as a reference. 

The radiel component 

The current spoke 
e 

is  moving from r ight  t o  l e f t  i n  t h i s  presentation. 

The observed intensi ty  of the 4847.9 A l i ne ,  labeled A i n  Fig. 1, is 

The discre- almost an order of magnitude higher than the expected value. 

pancy w a s  found t o  be the resu l t  of an incorrect experimentally determined 

t ransi t ion probabili ty reported i n  the 1iterature.l '  Pofnt B is  the data 

point plotted again, but t h i s  t i m e  using the theore t ica l  value for  the 

t rans i t ion  probability.11-12 The data i n  Fig. 1 therefore confirms the 

va l id i ty  of the theoret ical  calculation. 

2. Azimuthal Plasma Velocity 

The measurement of the azimuthal plasma velocity was necessary t o  de- 

termine whether the current spoke was an azimuthally propagating ionization 

wave or an acutal  plasma rotation. 

The plasma velocity can be measured indirect ly  by u t i l i z ing  the general- 

ized O h m ' s  l a w .  

The electron pressure gradient term i s  negligible i n  both the r ad ia l  and 

ax ia l  directions,  but not quite negligible i n  the azimuthal dlrection. 

The components of Ohm's l a w  are  then 



I /'- 

2-  

- 
w 
a3 
v 

.o, 

I I 1 

4 5 6 

1 -  

I I 1 I I I 

+one radian- 

Fig. 2. Radial arc current density and electron temperature 
VS. azimuthal distance at a radius of 3.0 e m .  



- 7- 

where terms containing J and B have been neglected. These quantit ies are 
8 8 

both small i n  the region of in te res t .  

The posit ive directions f o r  the quantit ies i n  Eqs. ( k ) ,  (5) and (6) 

are shown i n  Fig. 3 .  

Negatively biased probes indicate the existence of a region of substan- 

t i a l  plasma density j u s t  i n  f ront  of the moving current spoke. I n  t h i s  region 

= Jz = 0 and Eqs. (4) and (6) reduce t o  Jr 
a 

and 

A l l  of the f i e l d  components on the RHS of Eqs. (7) and (8) have been measured 

d i rec t ly  and the calculated values of  the azimuthal plasma velocity are equal 

t o  the velocity of the current spoke, i.e. 

a t  a radius of R = 3.0 cm. This agreement i s  shown i n  Figs. 8 and 9. The 

first  four t r iangles  i n  each p lo t  are calculated from Eqs. (7) and (8) respec- 

t ively,  assuming tha t  V = wR. e 



- W -  

Fig. 3. Positive directions assumed for components 
of E, B, v, and J. 
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3 .  Plasma Flux Wasurements i n  the Spoke 

Negatively biased Langmuir probes have been used t o  measure plasma 

fluxes and veloci t ies .  The theory of Langmuir probes is  very complicated, 

particul9rly i n  a magnetic f ie ld .  However, because of the fortunate set 

of circumstances discussed below, the analysis is  greatly simplified i n  the 

MPD arc. 

a)  The ion gyro radius is very large compared t o  the probe dimensions. 

For strong negative bias,  only ions are collected and the e f fec ts  of 

the magnetic f i e l d  can be neglected. 

b)  The Debye length i s  about 5 x 10 cm. The sheath dimensions are -4 

therefore very small compared t o  the probe dimensions and o r b i t a l  

e f fec ts  can be neglected. 

c )  

"Bohm velocity" 

The ion veloci t ies  re la t ive  t o  the probe are large compared t o  the 

The Bohm cr i te r ion  f o r  the existence of a s table  sheath i s  sa t i s f i ed  

and the simple theory of Langmuir i s  valid. 

d)  

sions. 

neglected. 

The double plane Langmuir probe is shown schematically i n  Fig. 4. 

The ion-ion mean f ree  path is large compared t o  the probe dimen- 

The perturbation produced by the probe can therefore be 

It 

consists of two plane electrodes located on opposite sides of the probe. 

Both electrodes are biased strongly negative so tha t  each col lects  a l l  of 

the ions moving towards it. The current collected by the front  electrode 

is j which is  given by F 

= e  



DOUBLE P L A ~ E  LA E 

Fig, b, Sketch of double plane Langmulr probe used 
In plasma flux measurements. 
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where j 

trode. 

is the ion saturation current density collected by the rear  elec- R 
The p l a sm f lux  i s  therefore given by 

- 
where V 

of the electrodes. 

is  the average plasma velocity component normal t o  the surfaces 
X 

Fig. 5 shows the radial dependence of the currents t o  the f ront  and 

rear electrodes of a probe positioned at the mouth of the anode and oriented 

i n  the azimuthal direction. The azimuthal plasma flux, which i s  given by 

the difference between the two signals, is  approximately proportional t o  

the radius. This implies that the plasma density is nearly independent of 

radius since 

The magnitude of the peak density can be obtained from the slope of the 

data i n  Fig. 5 .  

There ex i s t s  independent evidence for the lack of a rad ia l  dependence 

i n  the density. The in tens i t ies  of AI1 spectral  l i nes  did not vary with 

radius. Since the electron temperature w a s  found t o  be independent of 
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radius, the ion density must a l so  be constant. 

Since the azimuthal plasma veloci ty  i s  equal t o  t h a t  of the current 

spoke, the density prof i le  i n  the azimuthal direct ion was obtained d i r ec t ly  

from the azimuthal plasma flux. 

A plo t  of ion density vs. azimuthal distance is  shown i n  Fig. 6 f o r  a radius 

of 3.0 cm. a t  the mouth of the anode. 

arc current density i s  included as a reference. 

Again the radial component of the 

With the ion density p ro f i l e  determined, the probe w a s  oriented in  

the r ad ia l  and a x i a l  directions i n  order t o  measure the prof i le  of these 

velocity components. They are  given by 

The r e su l t s  are shown i n  Fig. 7 f o r  a radius of 3.0 cm. 

The r ad ia l  velocity prof i le  shows the existence of counter-streaming 

plasma flows. 

probably because of the centr i fugal  force.  

the ions are moving inward and therefore carry a portion of the a rc  current.  

The plasma i n  f ront  of the current spoke is  moving outward, 

In  the current spoke, however, 

The portion of the r a d i a l  a rc  current density carr ied by ions is 
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while tha t  carried by the electrons is  

* 
where Be i s  the azimuthal component of the e l ec t r i c  f i e l d  i n  the plasma 

r e s t  frame. The values of the ion and electron current densi t ies  calculated 

from Eqs. (13) and (14) on the axis of the current spoke at R = 3.0 cm are 

Jet I \3 aap/cJ  

thus roughly 3G$ of the r ad ia l  arc  current is carried by ions and 7 6  by 

electrons. 

4. Plasma Resis t ivi ty  

The measurements described i n  the preceding sections have determined 

a l l  of the quantit ies i n  the component equations of the generalized Ohm's 

l a w ,  Eqs. (41, (51, (6). 

It i s  now possible t o  compare d i rec t  measurements with values deduced 

from other measured quantit ies via  Ohm's l a w .  Because the greatest  data 

sca t te r  occurred i n  the e l ec t r i c  f i e l d  measurements, the e l ec t r i c  f i e l d  

components are  used for the comparison. Rewriting Eqs. (4), ( 5 )  and (6) 

Figs. 8, 9 and 10 show the measured values of the e l ec t r i c  f i e l d  components 

as Slack circles--w 

(16) and (17) as t r iangles .  

e r ro r  bars and the values calculated from Eqs. (l5), 

The r e s i s t i v i t y  used i n  Eqs. (15) and (3-7) had 
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Fig, 8, Redial electric field vs. azimuthal distance at 
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are plotted as triangles, 
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t o  be approximately four times as large as the value calculated from 

Spitzer 's  formula. 

were w e l l  outside of the e r ro r  bars of the measurements. The observed 

Circulated values of Er and EZ using Spi tzer ' s  value 

r e s i s t i v i ty  is therefore 

The azimuthal component of Ohm's l a w  does not include the res i s t iv i ty .  

The azimuthal e l ec t r i c  f i e l d  therefore provides a check f o r  in te rna l  con- 

sistency of the input data f o r  the r ight  hand side of Eq. (16). 

The rather  complicated deduction process described i n  Sections 111-2 

through 111-4 are outlined i n  the flow diagram shown i n  Fig. 11. The boxes 

enclose direct ly  measured quantit ies,  while inferred quantit ies are enclosed 

i n  c i rc les .  

5 .  Ion Temperature 

An order of magnitude estimate of the ion temperature w a s  obtained by 

rotat ing the double plane Iangmuir probe i n  the R-g plane unt i l  the electrode 

surfaces were pa ra l l e l  t o  the net plasma streaming velocity. In t h i s  orien- 

ta t ion  the ion saturation currents t o  the two electrodes are ident ical  and 

due ent i re ly  to  thermal motions. 

is  given by one of the following expressions depending on whether the electron 

The magnitude of the ion saturation current 

temperature is  greater or l e s s  than that of the ions. 13 

Substituting the masured values of jsat and n 



@ \ 
/ 

T 

Flg.  11. Flow diagram showing the combinations of observed 
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Since kTe has been measured spectroscopically t o  be 1.1 eV, it is clear ly  

the ion temperature that  i s  of the order of 11 eV.  

The same observations 

the resu l t s  shown i n  Table 

were made at  r a d i i  of 3.25 cm and 2.75 cm w i t h  

I. 

'I3ABI;E I 

kTi (eV) 

12 14 

11 12 

9 18 

Eo is  the stagnation energy or  the kinet ic  energy of the incomlng neu- 

t ra l  atoms when viewed from the r e s t  frame of the spoke. 

the measured ion temperatures is  about f 5@, therefore the apparent equality 

between the ion temperature and,the stagnation energy may not be exact, but 

The uncertainty i n  

they are of the same order of magnitude. 

The ion-ion mean free path at an energy of 10 e V  is approximately 2.5 cm, 

The 10 eV ion tempera- which i s  nearly 30 times greater the probe dimensions. 

ture and the corresponding ion-ion mean free path of 2.5 cm jus t i fy  the state- 

ments made i n  111-3 (c )  and (a). 

The ion saturation current t o  the rear electrode of the azimuthally 

oriented probe seems t o  support the contention tha t  the ion temperature i s  

roughly equal t o  the stagnation energy. 

t r ibut ion f o r  the ions, the ion saturation current density to  the rear 

Assuming a I%xwellian velocity dis- 

electrode is  
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where V is  the plasma streaming velocity and 
S 

The function F(x) i s  a strongly varying function of x--a factor  of two 

change i n  x = 3 produces two orders of magnitude change i n  F(x). 

shows the ion saturation current t o  the rear electrode t o  be at  most a 

we& function of radius. 

s tant .  The value of j calculated from Eq. (l9), assuming tha t  the ion 

temperature equals the stagnation energy, is  approximately $ of the observed 

Fig. 5 
E i  

v The r a t i o  ( s/Ei) must therefore be nearly con- 

R 

values given i n  Fig. 5 .  

over which F (-) varies. 

This agreement i s  not bad considering the range 

vs 
E ,  A. 

6. Enerm Analysis i n  Exhaust 

An energy analysis of the plasma i n  the exhaust w a s  made using the 

e lec t ros ta t ic  analyzer shown schematically i n  Fig. 12. It consists of an 

expansion chamber t o  lower the plasma density and two negatively biased 

grids t o  separate the electrons from the ions and t o  suppress secondary 

emission. A collector w i t h  variable bias collected a l l  ions having an 

energy greater than the col lector  potent ia l  re la t ive  t o  the plasma space 

potential. 

The analyzer output consists of a steady d.c. component plus an a.c. 

component which osc i l la tes  w i t h  a frequency equal t o  the rotat ion frequency 

of the arc.  The f rac t iona l  modulation of the output increases with increas- 

ing collector bias potent ia l  and a t t a ins  a value of lo$ at a bias potent ia l  

of about 50 volts .  Fig. 13 is  a plot  of the analyzer output as a function 
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Fig. 12. Schematic drawing of energy analyzer. All 
voltages are measured with rsepcot to the 
brass case. 
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of collector bias potent ia l  f o r  a run made 18 cm downstream of the anode 

at a radius of R = 3.5 cm. The ion dis t r ibut ion function is  given by the 

slope of the output data from the analyzer, i .e. 

where I is  the analyzer col lector  current and V is  the analyzer bias 

voltage. 

energies up t o  cutoff i n  the 5G t o  66 ev range, w i t h  some peaking i n  the 

dis t r ibut ion at energies between 35 and 50 ev. 

C C 

The data of Fig. 13 indicates a rather broad dis t r ibut ion of ion 

7. Plasma Flux Measurements i n  the Exhaust 

The double Langmuir probe described i n  Section 111-3 w a s  used t o  measure 

The projections of the  peak observed the plasma f lux  i n  the exhaust region. 

f lux n; on the R-g and R-Z planes are shown i n  Figs. 14 and 15 f o r  probes at 

positions 2 cm and 4 cm downstream of the anode. The direction of the 

magnetic f i e l d  vectors are also included i n  the figures for reference. It 

is  evident from the data tha t  the plasma i n  the exhause is  moving rad ia l ly  

across the magnetic f ield l ines .  

tioning e f f i c i en t ly  as a magnetic nozzle. 

The magnetic f i e l d  i s  therefore not func- 

The axial plasma f lux  is  observed t o  originate i n  the plasma spoke. 

Since the spoke has a limited azimuthal extent,  the time averaged axial flux 

at R = G i s  larger  than tha t  at  any other radial position. 

thrust  is therefore a l so  greatest  near the axis of the arc. 

The t i m e  averaged 

N. Conclusions 

1. The arc has the form of a rotating spoke. The electron temperature 

is quite uniform throughout the plasma spoke, and the ion density is  nearly 

independent of radius. 

an order of magnitude less than tha t  i n  the spoke. 

The ion density outside the plasma spoke i s  a t  l ea s t  
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2.  The azimuthal extent of the plasma is  greater than that  of the 

current spoke, w i t h  the  r e su l t  tha t  a plasma region e x i s t s  ahead of the 

current spoke. 

velocity and appears t o  be spun out rad ia l ly  by the Centrifugal force. 

This advanced plasma i s  moving azimuthally with the spoke 

3. The plasma within the current spoke i s  counterstreaming rad ia l ly  

inward indicating the presence of an inward force greater  than the centri-  

fugal force. The ion pressure gradient seems 

In accordance w i t h  the data l i s t e d  i n  Table I 

hT = pEa 

t o  be the  most li’lely candidate. 

where p is  a fac tor  of order one and Eo i s  the stagnation energy. Thus 

The r a d i a l  component of the volume force due t o  the ion pressure gradient 

Since the density n has been observed t o  be independent of R, Eqs.  (21) 

and (232 together give 

where Fcent 

4. 

is  the centr i fugal  force per unit  volume. 

Although no azimuthal currents have been detected i n  the  body of 

the arc ,  a current of about 50 amperes has been observed to  flow azimuthally 

i n  the anode sheath. The resul t ing J x 3 force is directed inward and i s  

of suf f ic ien t  magnitude t o  overcome the ne t  centr i fugal  force or equivalently 

t o  support the ion pressure gradient. 
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5. The observed r e s i s t i v i ty  is roughly four times as large as a 

value calculated from the Spitzer formula. Since Spitzer 's  assumptions 

of a Maxwellian electron dis t r ibut ion and large plasma parameter A seem t o  

be sa t i s f ied ,  the anomalously high r e s i s t i v i t y  i s  suggestive of  an enhanced 

electron scat ter ing by microinstabil i t ies o r  small scale plasma turbulence. 

6 .  The ions seem t o  carry one-third of the r ad ia l  arc current w i t h  

the electrons carrying the remainder. 

7. The average ax ia l ly  directed ion energy i s  far i n  excess of 3 ev 

Therefore, the acceleration of the plasma does not appear t o  be per ion. 

produced by a magnetic nozzle, i . e* ,  by acceleration i n  the axial magnetic 

f ie ld  gradient, since the electrons have only about 1 ev energy, and i n  

the absence of ion coupling t o  the f i e ld ,  nozzle acceleration t o  about the 

electron energy i s  a l l  that can be achieved. 

We find, however, that  d i rec t  J x B acceleration by the se l f - f i e ld  of 

the arc  is  approximately adequate t o  produce the observed momentum flux, and 

hence, our conclusion, as opposed t o  our previous position, is tha t  t h i s  

device i s  not simply an arc heater, but ac t s  as a d i rec t  MHD accelerator. 
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Figure Captions -- 

Fig. 1 Plot of ln{hI/gA) vs. excitation energy fo r  spectral  lines of 
Argon 11. 

Radial arc  current density and electron temperature VS. azimuthal 
distance a t  a radius of 3.0 em. 

Fig. 2 

Fig. 3 Positive directions assumed fo r  components of E, 13, v, and J. 

Fig. 4 Sletch of double plane Langmuir probe used i n  plasma flux 
measurements 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. l G .  

Fig. 11 

Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

Radial dependence of ion saturation currents t o  front and rear  
electrodes of double plane Langmuir probe. 

Radial arc current density and ion density vs. azimuthal distance 
at a radius of 3.0 em. 

Plasma velocity components vs. azimuthal distance a t  a radius of 
3.0 em. 

Radial e l e c t r i c  f i e l d  vs. azimuthal distance at a radius of 3.0 cm. 
Directly measured values are shown as c i r c l e s ,  while calculated 
values are plotted as triangles.  

Axial e l ec t r i c  f i e l d  vs. azimuthal distance at a radius of 3.0 cm. 
Directly measured values are shown as c i rc les ,  while calculated 
values are plot ted as triangles.  

Azimuthal e l ec t r i c  f i e l d  vs. azimuthal distance at a radius of 
3.0 em. 
calculated values are plot ted as t r iangles .  

Directly measured values are shown as c i rc les ,  while 

Flow diagram showing the combinations of observed quantit ies used 
t o  deduce plasma properties. The boxes enclose d i rec t ly  measured 
quantit ies,  while inferred quantit ies are  enclosed i n  c i rc les .  

Schematic drawing of energy analyzer. 

Output current of energy analyzer as a function of col lector  volt- 
age. Analyzer positioned 18 cm downstream of anode at  a radius of 
3.5 cm with i ts  axis pa ra l l e l  t o  tha t  of the accelerator. 

Projections of the peak plasma f lux  and magnetic f i e l d  on the R-0 
and R-Z planes f o r  probe positioned 2 cm downstream of the anode. 

Projections of the peak plasma f lux and magnetic f ie ld  on the R-9 
and R-Z planes f o r  probe positioned 4 cm downstream of the anode. 


